
 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 1

 TM

Softonomy

The Emergence of

Components

 6th January 2002

© Copyright 2002, Softonomy Ltd.

Softonomy Ltd
Growcorp Innovation Centre, 3015 Lake Drive, Citywest, Dublin 24, Ireland.

For queries or further information, you can reach us by:

Email: info@softonomy.ie
Telephone: +353 (0)86 821 0917
Fax: +353 (0)1 284 6381

Our website is located at: www.softonomy.ie

Company Registered in Ireland, No: 343729.

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 2

1. Introduction

Softonomy are a young software technology company headquartered in Ireland. We
provide an innovative Software Development Service that produces effective software solutions
for Business Clients. What we provide for our Clients is really quite straightforward - we build
tailored software application solutions that add value to a Clients business processes and their
associated operational and strategic information systems.

The software application solutions we develop with our Clients use pre-built business process and
software components, wherever possible. Typical benefits of our software solutions include:

Ø Speed - improved capture, handling, processing and management of information
Ø Optimum Fit – catering for specific business and informational needs
Ø Efficiency - the generation of efficiencies within internal and external business processes

This white paper outlines what is meant by a “component-based software paradigm” and how
Softonomy uses this to beneficially develop software application solutions for our Clients.

2. Basis of our Research

Over the last two decades, we have investigated the vast majority of software development
techniques, methodologies, programming languages, architectures and frameworks as well as
information system and software development paradigms that have been proposed, developed
and, if successfully maturing, worked on by both academic and commercial entities.

Additionally, we have been involved in developing real-world, robust and functionally complex
software applications for major Clients. Many of these software applications have been supplied
across an international customer base and have been subjected to demanding user and business
environments. We’ve also developed smaller applications for less complex businesses, but
nonetheless equally demanding Clients in terms of expectations and quality requirements. The
Clients we have worked with have spanned across a wide range of industry sectors, such as
Financial Services, Telecoms and Hi-Tech, to name but a few. Our software development
experiences have helped us to understand what works and what doesn’t.

Furthermore, in the last 18 months, we have enhanced our understanding of software
development and its linkage to business benefit by investing in a research programme. This
research programme consisted of detailed and extensive secondary desk research complemented
by a quantity of basic primary research. This has added to our weight of knowledge of the
software development area, and has allowed us to be convinced what are the current best
practices and where and how they can be applied.

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 3

3. Business Opportunity

Our extensive research has shown that there is still very much to automate within businesses. For
example, in Mar 2001, the American Management Association reported that one of the most
important skills businesses need today is the ability to use information to address business
challenges. Having the right information at the right granularity delivered to the right person and
at the right time is key. Our Clients can use this as a business opportunity.

Clients have an opportunity to create “better” automation and information system “intelligence”,
to increase business process effectiveness and to deliver efficiencies (see Figure 1).

Figure 1: Relationship between Software Solutions and Business Processes © Copyright 2002, Softonomy Ltd.

4. Components

4.1 Background to Components

The idea that a software provider can provide solutions via the re-use of components is not new.
Ever since “shared software libraries” were first put forward by Doug McIlroy in 1968, and then
popularly re-iterated with “object integrated circuits” by Brad Cox in 1986, Software Re-use has
been recognised as an attractive idea with a direct payoff. Building software solutions from
previously developed, high-quality software components can certainly save both the costs and the
time of redundant work and overall enhances solutions.

However, obtaining the holy grail of “reasonable levels of re-use” has proved elusive. A
multitude of technical, process, and organisational issues have blocked and hindered progress.
But despite the pursuit of co-called “silver bullets” to dramatically improve software development
processes, it remains clear to those involved that systematic software re-use via component-based
development is the most promising way for significant improvement.

Business
Processes

Customers

SOFTWARE
SOLUTIONS

Suppliers/Partners

CLIENT

Business
Processes

Business
Processes

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 4

4.2 Assembling Components

Most software development organisations have moved to object-oriented (OO) technologies
because businesses believed that this would lead to significant re-use. Unfortunately, without an
explicit re-use software process, most of these object efforts were unsuccessful in terms of re-use.
Object-oriented technologies have remained popular for their other beneficial reasons.

The term “re-use” is something of a misnomer - no other engineering field uses this term even
though the same approach is repeatedly applied – ie: the systematic design, use and re-use of
standard components. This is an accepted practice in engineering fields, and we endorse this
practice also for software.

An assemble approach can be adopted (sometimes referred to as the buy-and-build approach).
Brad Cox forecast this software “revolution” back in 1986. The approach is based on taking an
engineering approach to software development. Car manufacturers use pre-fabricated
components, like steering wheels and seats, and assemble them using standard interfaces and
procedures to build finished cars.

 + + +

=

Similarly to building a car, building a software application is not easy. In fact, software is
inherently more complex as business is much more complex and sophisticated than a device that
takes you from point A to B. But by using a component-based approach to software development,
it is possible to simplify the development and deployment process. By assembling, instead of
buying and customizing, we avoid “re-inventing the wheel” every time.

The component-based approach provides the business benefits of “rapid application
development” (RAD) for quick delivery, an enterprise-wide consistency to business rules, and
caters for quick responses to changing business requirements. The component-based approach
lets you mix and match best-of-breed solutions to build key software applications that are
scalable, reliable, reusable, and interoperable.

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 5

4.2 Framework for Components

Software is arguably the world's most important part of the economy today. It's the catalyst and
enabler, along with the required hardware technology, that has made new ways of doing business
and connecting people possible.

But building powerful software solutions for business “problems” is still very difficult. Although
new software development tools regularly lower the bar as to what we mean by simple, there are
both market and technology-based pressures that require the building of software solutions with
increasing complexity. Despite the advances in the software development tools and the
methodologies, developing complex software solutions has remained and will remain labour-
intensive, as ultimately, there is an intrinsic intellectual complexity in software development.

It may or may not seem obvious, but the best approach in software development is to “write less
software” or rather, spend less time writing software for an equivalent level of functionality. That
can show itself in several ways such as the use of languages, modelling and by using the
component-based development approach. For example, a technology such as JavaBeans provides
a mechanism to handle more complex software components and UML is the emergent standard
for modelling. Technologies such as these put in place a framework to build or assemble software
solutions from components.

The value of building software solutions from components is clear, yet we should ask ourselves
why there hasn't been a flourishing supplier market of component-based solutions until now,
given the advantages are so compelling? Well, it happens that the presence of the necessary
technical infrastructure framework to support component-based development is only a recent
advance, and has just come about in the last couple of years. For example, platforms such as
J2EE and .NET platforms both support complex components. Additionally, the emergence of
standard protocols such as XML has made it much easier for software builders to specify their
components and to put them together.

Figure 2: Component Framework for Software Solutions © Copyright 2002, Softonomy Ltd.

J2EE

COMPONENT
FRAMEWORK

for
 SOFTWARE
SOLUTIONS

JavaBeans

.NET
UML

XML

ActiveX

EAI WSDL/SOAP

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 6

5. Business Needs

While businesses in the 1980's and 1990's adopted more complex off-the-shelf packages to satisfy
their ever-increasing demand for business automation, it was and is clear that not all requirements
could be met by those packages. Furthermore, business dynamism has increased progressively to
its current state where now businesses need to be ever more flexible and faster to adapt to change.
Those that remain stationary for an appreciable length of time are losing out in terms of revenue,
profits and long-term value. In tandem with this is the further maturation of the relationship that
all businesses have with their Customers, as there is increasing Customer “awareness” and
increasing Customer access to information. The Customer, more than ever, is “the King”.

Businesses know that they need standard solutions, but they also realise that they have unique
value-adding attributes within their business that distinguishes them from their competitors and to
their Customers. In fact, the larger and more complex the business, the more likely it is to be
unique. For example, a Bank when compared with a Convenience Store will have much more
complex requirements and can leverage technology as a differentiator to its Customers and
against its Competitors.

What many businesses have found when they implemented large off-the-shelf packages, is that
these solutions can only go so far in providing for the information systems and automation
aspects of the unique aspects in their business operations. Furthermore, the larger packages are
very cumbersome when it comes to developing a solution that matches closely with the business
needs. In fact, most of them were not designed from the beginning to have this level of flexibility.
So, in some respects they are “the wrong tool for the job”. Using our car analogy again, the
packaged software is equivalent to a Lada – ie: the same car for everyone. This would be okay if
everybody had the same requirements, but people, like businesses, don’t - one size does not fit
all! So, businesses are struggling with the packages they implemented as those packages are not
quite delivering on their ultimate needs and in many places are very much deficient. Combined
with this is the poor performance of the larger packages to meet the new and upcoming demands
in a timely manner due to their unwieldiness. These factors paint a current picture of businesses
dissatisfied with their information systems and software applications.

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 7

6. Tailored Solutions

Businesses have always realised that customised or tailored solutions fit better. However, they
haven't been able to afford these due to the high development and support costs if those custom
applications are built from scratch. However, it is now not necessary to build software solutions
from zero by using the new component-based development paradigm. Software component re-use
allows tailored software solutions to be built from robust and proven software components.

However, in many instances we have seen where Businesses state that it does not make sense to
develop a custom solution, in terms of costs, etc. However, this is based on the mistaken
assumption that the term “custom software” implies building from scratch. This has mistakenly
tarnished the term somewhat and has made it confusing for many business decision-makers.

In fact, the advantages of custom software have not gone away, and customised software is still a
business enabler and a competitive advantage - as long as the path of creating that software is not
a deterrent in itself. It is this latter aspect that has reared its ugly head over the last decade or so.
As application requirements have become more complex and more and more of business has
become automated, the cost of creating custom software, each time from scratch, became
increasingly less economic and hence prohibitive. So rather than custom software not being
“economic”, it is the method through which it is built which must be made economic. This is
where component-based software development comes in. Businesses can get their much sought
after customised solutions, and because they are built using the component-based software
development paradigm, the necessity to build from scratch and its associated costs are avoided.

Figure 3: Using Components to satisfy Software Solutions © Copyright 2002, Softonomy Ltd.

Components

Software Solution

Business Requirements
 Development

Project

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 8

7. What is a Component?

So far we have spoken about component-based development mainly in the context of software
functional components. However, this is not the only reusable component within the software
development paradigm. You can re-use all the artefacts (or deliverables), not only software, such
as functional requirements, models, use cases, analysis diagrams, design documents and test
cases. These and other business components, such as business processes, along with the software
components combine to form what is termed a component repository. These components, both
business and software components, can then be re-used across multiple software solutions.

Figure 4: Business & Software Components are stored in a repository © Copyright 2002, Softonomy Ltd.

But what is a software component? Well, in some sense, it’s whatever you define it to be.
According to the OMG Modeling Language Specification (Rev 1.3), a (software) component is:

“a physical, replaceable part of a system that packages implementation and provides the
realization of a set of interfaces. It represents a physical piece of a system’s
implementation, including software code (source, binary or executable) or equivalents,
such as scripts or command files. As such, it may itself conform to and provide the
realization of a set of interfaces, which represent services implemented by the elements
resident within it. These services define behavior offered by instances of the component as
a whole to other client component instances.”

Yes, not exactly plain english! The key to a software component is that it has to have a defined
set of interfaces and that it actually does something, rather than describing something. We think
of components as larger grained entities that contain a certain level of non-trivial functionality.
Objects from OOP can therefore be seen as a “sub-species” of software components.

Component
Repository

Software
Projects

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 9

8. The Softonomy Solution

The process of “translating” business requirements into working software is a very complex
undertaking, and becoming ever more so as execution architectures are extended to multiple tiers
and across external networks such as the internet to Customers, Partners and Suppliers.
Component-based development is now a proven method for not only increasing software
developer productivity, enhancing software quality, and improving the maintainability and
modifiability of the resulting software solutions, but also in terms of delivering powerful tailored
software solutions giving business Clients what they need. The benefits come as a direct
consequence of the component development approach: building software solutions from pre-built
(and pre-tested!) components.

To provide the software solutions, Softonomy provides a solution building software
development service working with Clients to build tailored software applications, using software
and business processes components that work. These solutions not only work with the large
packages already installed, but also they are customisable to closely fit a company's business.

By building software solutions using pre-built components whenever they fit, such a technique
provides not only a robust and cost-efficient mechanism for software development, but also an
effective framework for maintenance and ongoing support. Furthermore, with a component-based
approach, adaptable Software Solutions can be built which cater for flexible enhancements, as
and when our Clients future needs demand.

Softonomy have researched and developed the Siphon Intelligent Component Engine:

Ø this is a highly scalable repository for components
Ø it contains Software Components (such as UML designs, object classes, EJB & ActiveX

components, XML, etc) and Business Components (such as business processes)
Ø it is a high performing, fault-tolerant and secure engine, centrally managed. It provides a

business-focused Component Framework environment that caters for Design Patterns,
Server-Side Applications, Multi-tiered Architecture, UML Models, Software Reuse,
Software Control, Software Efficiency, Business Process Management, and ongoing ROI
Analysis.

Ø The software we build for our Clients can be applied in areas such as:
o Enterprise Application Integration (EAI) (connecting to CRM, ERP & SCM)
o The linking of “front-ends” to “back-ends” (and vice versa)
o The implementation of new channels such as wireless, mobile and web/e-business
o Solutions using the Web Services technologies, such as WSDL, UDDI, SOAP

 © Copyright 2002, Softonomy Ltd.

Date: 6th January 2002 Page: 10

Further Information

The key features of the Softonomy Software Development Service are:

1) that we build software, first and foremost
2) we offer a return on investment
3) we build tailored solutions, iteratively
4) we provide support, maintenance, and the path for enhancements and extensions
5) we build software solutions taking a business approach
6) we provide an intelligent component engine
7) we are practical about technologies
8) we provide skilled software development resources
9) we have experienced software developers with sector knowledge
10) we deliver effective project management

We focus on software development to bring our Clients cost effectiveness and efficiency,
technology flexibility, effective software solutions and to provide a future solution path.

For further information on Softonomy and our other white papers, please refer to our website
located at www.softonomy.com

or send an email with any questions you may have to: info@softonomy.com

Alternatively, contact us as follows:

Tel: +353 (0)86 821 0917
Fax: +353 (0)1 284 6381

We look forward to hearing from you.

